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(1) dS= T
For reversible process: dS = _dQTreV
A0irrey

For 1irreversible process: dS > T

Where dQrey, dQjrrey denote heat delivered to system in a reversible and
irreversible process respectively.

(2) W. Thomson (Lord Kelvin): It is impossible, by a cyclic process to take heat
from an energy reservoir and convert it to work without at the same time transferring

heat from a hot to a cold body.

or: Work cannot be extracted by a cyclic process from an energy reservoir at one
temperature.

(3) Clausius’ version: It is impossible by a cyclic process to transfer heat from a
cold body to a hot body without also performing work

2> or: Heat does not flow spontaneously from a cold to a hot body.

» Statement 2 can be understood using the cyclic process discussed earlier
(Carnot cycle).



« If T > T, cyclic process is a heat engine, i.e., heat is extracted from reservoir at the

higher temperature T, unloaded to a reservoir at the lower temperature T’, and net
work obtained from system is
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This is the maximum efficiency, because each step of the cycle is reversible.

Fraction of heat adsorbed that is unavailable to do work

_ Qstep 3 _ Tiower

- Qstep 1 - Tupper

2

&



3
« If T'>T, cyclic process is a heat pump or refrigerator. There is net work done on

system =nR(T’ — T)ln% and heat (z nRTIn %) is pumped from the lower
1

temperature T, and portion of this work and heat input (: nRT'In %j 1s released to the
1

reservoir at the higher temperature 7°.

L]
Heat pumped by system at lower temperature _ et V;
Work done on (absorbed by) system nR(T" = T)ln %

= T — Tiower
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Statement 3 follows from this analysis.

Entropv and Disorder

AN

We shall show later that \
\

oy S =kplnQ kp=1.380x10"23 JKk !
( Boltzmann constant)

where. Q = # of system wavefunctions that could be written for the N molecules of the
system at a particular E and V, or a particular T and V.

It turns out Q is related to the number of possible distinct arrangements arising from
distributing the molecules among the one-particle quantum states, for a system of non-

interacting molecules.

More specifically,

S= ——NkBZ P;InP j + constant

Joo.
all one - particle
quantum states

or —Nkp ZX jlnX j + constant
J



where Pj is the probability of finding a molecule in one-particle quantum state j. ( -

X is the fraction of molecules occupying one-particle quantum state j.

- Example

As an example, consider N non-interacting point masses, with no nuclear spin and no
internal degrees of freedom (electronic, vibrational, rotational, etc.). That is, the point
masses have translational energies only.

Such an idealized system is called perfect gas.

Note that an ideal gas shares some of these features, except that internal degrees of
freedom are not excluded.

One-particle energy states and wavefunctions

Assume a cubic box of side L -
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one-particle energies
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Onim (x,y, z) = (\/%) sin nzcx sin mzty sin szy

System wavefunction for N non-interacting particles Wgystem for N non-interacting

particles can be written as products of one-particle eigenfunctions and/or linear
combinations thereof.

e.g. if all molecules are “occupying” the lowest one-particle quantum state,

1.e., n=1, m=1, [=1] for all molecules,



then

\Psystem(xl,)’],Z]; xz,yz,ZZ;...) ‘
'\*V»“’"ﬁ, el
JL pzu)\"‘ci,l- 1,2,%-

=I;I¢]I](xi,)’i,zi)

It is possible to write only 1 such system wavefunction

nQ=]

If circumstances allow some of the particles to be distributed to higher-energy one-
particle quantum states, then more Wgyem’s may be written corresponding to the

distinct arrangements arising from allocating the particles in the one-particle quantum
states.

For example, if the nml=211; nml=121; and nml=112 one-particle quantum states are
accessible, possible Fgygtem’s are:
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All 3 of these states of the system have the same energy. Therefore, system degeneracy
has increased.

Entropy is increased for the system.
There is more disorder.

randomness.
chaos.



 Effect of Temperature and Volume on Entropy - Molecular

Interpretation.
©
increasing T
increasing
RN et 66 1% o
» . —
U,.u"("\ WC‘JN\.
b e dV o0
dort L 86660 S
s _
(e
quantum '
states I-di ional b T A lughts '
-dimensional box dmdty 4§ omrgy Tk eenaec,

(A) Temperature: Increasing temperature will allow the higher energy quantum
states to become more accessible to the molecules. System
degeneracy goes up. That is, one can write more distinct

system for the system; ..S increases.

(B) Volume: Increasing volume will lower energy of the translational

energy states, making more quantum states accessible to
molecules at a given temperature. The one-particle energy

levels become more closely packed.
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Therefore, more of the one-particle energy states become
or E, and S increases with increasing volume. In fact,

accessible for a given T
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so that AS(V;—V3)= kBln%‘j—

N
_ Y2} = \4)
= kBln( v, ) = Nkpgln v,

_ V2
= ann( v, )

result obtained before.

Will later show that:

Absolute entropy of system
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nj= # of molecules occupying quantum state “
and Nk = n(N g4k) = nR

So this picture of entropy unifies everything!

* Distinguishability of Molecules

If molecules of different chemical structure, isotopic composition, or “different color”
share the same configuration space or volume, each of the distinguishable molecules

will have its own set of molecular quantum states and the absolute entropy of the system
will increase.



e« The ““Color Blind” Problem

Being “color blind” will underestimate the absolute entropy of a system.

But “color blindness” will not affect ASprocess because one would be equally “color

blind” in computing entropy of initial and final states!

~ Entropy that is “missed” or not accountable due to “color blindness” is often termed
residual or latent entropy.



